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Since the tables in [4, Ch. 14] deal only with the cases whete4, Joint Source—Channel Coding of a Gaussian Mixture
let us examine in the next example the first two value&¢f., 1, 5). Source Over the Gaussian Broadcast Channel
Example 1: Clearly, K'(4, 1, 5) = 16 and hence111(§3)(4) = 16.

g Zvi Reznig Student Member, IEERam Zamir Senior Member, IEEE
Let thenn = 5. The code and Meir FederFellow, IEEE

C = Fy' \ {00000, 11100, 00111, 11011}
Abstract—Suppose that we want to send a description of a single source
to two listeners through a Gaussian broadcast channel, where the channel
givesK'(5, 1, 5) < 28. In fact, there cannot be a fivefoldcovering is used once per source sample. The problem of joint source—channel
with only 27 codewords. Assume, to the contrary, the existence of suttling is to design a communication system to minimize the distortiodD,
a codeC'. We may assume without loss of generality thed00 be- at receiver 1 and at the same time minimize the distortionD. at receiver

/' pm : 2. If the source is Gaussian, the optimal solution is well known, and it
longs toC” = £\ C'. Words of weight less than three cannot thereforg achieved by an uncoded “analog” scheme. In this correspondence, we

existinC". Since there can only be one word of weight four or five iRonsider a Gaussian mixture source. We derive inner and outer bounds
C', at least three words of weight three are(ih However, evidently for the distortion region of all (D,, D) pairs that are simultaneously

at most two words of weight three can be(if, a contradiction. Thus, achievable. The outer bound is based on the entropy power inequality,

K(5,1,5) = 28 = IM(§3)(5) while the inner bound is attained by a digital-over-analog encoding scheme,
P e - </ which we present here. We also show that if the modes of the Gaussian
It follows easily from [13, Theorem 8] (and Theorem 1) that mixture are highly separated, our bounds are tight, and hence, our scheme

attains the entire distortion region. This optimal region exceeds the region
attained by separating source and channel coding, although it does not

K. 1w contain the “ideal” point (D, Ds) = (R™*(Cy), R™*(C%)).
p2t/(n+1) Index Terms—bigital-over-analog scheme, distortion region, joint
source—channel coding, separation principle.
asn — oo Wheny is fixed. Hence, also
|. INTRODUCTION
I\Jl(sl) (n) 1

The broadcast channglillustrated in Fig. 1, is a communication
channel in which one sender transmits to two or more receivers. In the
usual formulation of the problem, the sender wishes to send two pri-
vate messages, one to each receiver, and possibly a common message,
to both receivers. These messages need to be transmitted losslessly [1].
ACKNOWLEDGMENT Suppose, however, that we are givenirgle source and a fidelity
%gerion, and we want to convey the source to both receivers simulta-
neously. Suppose further that the source entropy is large to the extent
that it cannot be sent losslessly through the channel; there must be some
distortion in the receivers’ output. The problenjaifit source—channel
codingfor the broadcast channel is to find the set of all achievable dis-
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Fig. 1. Lossy transmission of a source through a broadcast channel. ) . ) )
Fig. 2. Example of a Gaussian mixture source with two modes.

denote byD.. andD; the distortions obtained with the coarse and finq_h rem 2. Hvbrid analoa—diaital schemes wer ted for vari
descriptions, respectively. Step twaisannel codingWe use a broad- . leorem <. Hy analog-digital schemes were suggested for various
gint source—channel coding settings, mainly for the case where the

cast channel code (see [5, Theorem 14.6.2]) to send the coarse descyip- o -
tion message to both receivers, and the refinement message to recﬁggﬂr;?/:/:vaenrd\r:vcl)dgr]c;cs)flgfr%%rtitr:;ri]t;/hv?/assogif:nt;srg\rlggf:ﬂ:’ait?ﬁé[g]’ 71,

lonly.H iver 1 and iver 2 obtain distortib dD., S .
only. FIENCe, receiver L and receiver < oblain distortiosand .. The outer bound is given in Theorem 2, whose proof resembles

respectively. Bergmans’ proof of the converse theorem for the Gaussian broadcast
The two-step encoding is basedseparationthe source coding and channel (for lossless transmission) [10]. It is based on the entropy
channel coding are done separately. Unfortunately, unlike for the cggfiver inequality. In Theorem 3, we show that as the Gaussian mixture
of point-to-point communication, the distortion pair obtained by thgecomes highly separat¢tli — o), the two bounds become tight,
two-step approach is usually suboptimal. This stems from the threshglgti hence, the entire distortion region is completely characterized.
effect of digital codes; although the worse receiver cannot decode tfige asymptotic solution is nontrivial in the sense that, on one hand,
refinement message losslessly, it could still obtain some informati@fis strictly better than source—channel separation, and on the other

about it. However, no technique exists to utilize this information in aRand, it is strictly worse than the ideal (nonconflict) distortion pair.
optimal way [2], [7], [8]. Suboptimality of separation is known for other

multiuser problems as well [5, p. 448]. One simple example, where sep-

aration is strictly suboptimal, is the case of a Gaussian source sent over

a Gaussian broadcast channel, with a squared-error distortion measure.

In fact, if the channel is used once per each source sample, then opti- |l. INNER AND OUTER BOUNDS ON THEDISTORTION REGION

mality is achieved in this case by analog transmission, i.e., by sending

the sourcaincoded6], [7]. Furthermore, the resulting distortion pairis  Definition 1: (D, D2) is an achievable distortion pafior the

“ideal” in the sense that there is no conflict between the two receivegburce S, the distortion measurel(s, §), and the memoryless

In the general case, the “ideal” point is not achievable. broadcast channéi(y. y|x) if for somen there exist an encoding
In this correspondence, we consider a specific example of soufdBCtionX = i (5) and two reconstruction functio = g1, (Y1)

and channel which enables us to combine the advantages of codBfSz = g2 (Y2) such that for = 1. 2
and uncoded transmission, and gain some mathematical insight. Our

broadcast channel is Gaussian and the distortion measure is squared- D,=F (d(S, Si))
error. The sourcé, which needs to be transmitted over the broadcast
channel, is th&aussian mixtursource. That is, where bold-face letters denote blocks of sizée.,S = (51, ..., S..)
is the source blockX = (X3, ..., X,,) is the channel input block,
. Y, = (Yi1,...,Y;, ) are the channel output blocks, add =
S=DB+N (1) (5‘1-, Ly onns 5, ») are the reconstruction blocks.

The achievable distortion regios defined as the closure of the set
of achievable distortion pairs.
The achievable distortion region must be convex by a time-sharing

whereN is a zero-mean white Gaussian with variandeand B €

{a1. ..., am} is a discrete random variable which is statistically in-
dependent ofV. One example of such a source, with= 2, is illus- argument.
trated in Fig. 2. We define Definition 2: A Gaussian broadcast channgly;, y»|«) satisfies
fori = 1,2
aélmin(|a'—a>|) n
Py T 1 ZE(X’?) <P Y.=X4+2Z, Zi~N(, o?)
and n t=1
12 a/o,.

where Z,, Z>, and X are mutually statistically independent, and
0'5 > o'f.
That is,! denotes the separation level of the two closest modes of therpe Gayssian broadcast channel is a degraded broadcast channel [5,
Gaussian mixture. p. 379]. The individual capaciti€s; andC5 of the good and bad chan-
In Section Il, we derive nontrivial inner and outer bounds for the segls, respectively, are given by
of the achievable distortion pai(d:, D-). Specifically, we present

the digital-over-analog scheme that is used to derive the inner bound in Ci = Llog(1+ P/o}), i=1,2. 2
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Fig. 3. Digital-over-analog encoding scheme. (a) Encoder. (b) Broadc

channel { = 1, 2). (c) Decoder{ = 1, 2).
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for everyi. It then setsV' = S — B’. By taking the expectation ovér
we observe that for evetyPr(B' = a;) = Pr(B = ;). Infact, since
the conditional joint distribution oB’ and N’ givenSS is the same as
that of B and N given S, we haveN’ ~ A(0, 02), andB’ and N’
are statistically independent.

Each sampleN’ is scaled by a scalafk’; to produceXy. A
source—channel code encodes the-block B’ = (Bj, ..., B,,) to
produce the vectaK 5 = i,,(B'), which is then added to the vector
X n to produce the encoder outplit Hence,B' is transmitted over a
virtual channel whose noise is the sumXf; and the channel noise.
To transmitB’ reliably to the worse receiver (and hence also to the
better receiver) we must have for some> 0

Pr

EEEICEEN BN
o2 +PG) ®

H(B')=H(B)=Cpy— A = %log <1 +

whereC2 is the capacity of the worse (point-to-point) virtual channel,
and Pg and P;; are the powers oK g and X , respectively. Com-
Tﬁﬁing (8) and the power constraiftt; + Pz = P> and solving for’
yields forA — 0

(Note that forlosslesgransmission, the rate pdi€';, C-) lies outside 2 *
. . . s A0+ P 2 - Py

of the capacity region of the Gaussian broadcast channel [10].) P =Pg= S2m(B) 72 and K, = poat 9)
With the above definitions we state that our goal is to find the achiev- "

able distortion region for the Gaussian mixture source, the Gaussian-S

ince by (8)H(B') < Cps, both receivers can decod® loss-

broadcast channel (with one channel use per source sample), anqéggly as — oo, and subtract the associated codewlirg. Thus, as

squared error distortion measure

n

N 1 4 2
(S, 8i) = = > (S — 5i,0)%.

n
t=1

@)

We start by calculatingzs (D), the rate-distortion function aof.

We note that forD < ¢2 we can writeS as the independent sum of a,
Gaussian with varianc® and some random variable. Hence, by ([11broadcast channel witt, > H(B)

Theorem 4.3.1]), the Shannon lower bound is tight. That is,

Rs(D) = h(S) — %log(QﬁeD) @)
—I(B: S) + h(S|B) — %log(QTreD) )
=H(B)— () + %log <%) (6)

wheree(1) 2 H(B|S), and we used
o1 2
h(S|B) = h(N) = §log(27rean).

Using Fano’s inequality and the nonnegativity Bf B|.S), one can
verify that

0 < e(l) < Hy(2Q(D) +2Q(1)log(m — 1) (7)

whereH;(-) is the binary entropy function ard is the error function.

Clearly,e(l) — 0 asl — .
The source-decomposition and digital-over-anal@a simply the

A — 0, the expected distortion is asymptotically the same as the av-

erage squared error for a Gaussian source with variahtensmitted

uncoded with powef’; over channels with additive white Gaussian

noise with powers} ande3. This leads (using the minimum-mean-

squared-error gaifis; = P/ (P& + o)), to the following theorem.
Theorem 1 (Inner Bound)The distortion pair(D,, D), for

sending the Gaussian mixture sourfeof (1) over a Gaussian

is achievable ifD, > D7 and

D; > D3, where

2 2

* * _ O—'Il O—n
(D1, D) = <1+P5/«r‘1’ 1+P5/rr§>' (10

Note that by (2), (6), (9), and (10) we have
C2 = Rs(D3) +e(l) 11)

wheree(!) is defined in (6). Hence(7) is the “wasted rate” with re-
spect to receiver 2, which vanishes for~ co. When! is small, we
could reduce the waste by allowing some probability of misdetecting
B by receiver 2. This would allow to shift some of the power from the
digital part to the analog part, up to the point whékg is minimized.
However, even with this minimization, we do not claim that our scheme
is optimal for finite!. Hence, we shall skip this optimization process
and simplify our analysis.

Also note that sincé’; in (9) was optimized for receiver )7 is
strictly larger thanR3'(C4) for any!. Still, we will prove that the
scheme is optimal over all joint source—channel codes fercc.

Fig. 4 depicts the distortion region of a Gaussian mixture source with
two modes(m = 2), transmitted over a Gaussian broadcast channel.

digital-over-analog) encoder and decoders are illustrated in Fig. 3. Were, we show a channel with = 5, ¢ = 0.158, ande? = 0.5,
shall briefly analyze this scheme here. Similar analysis can be foundiifg a source wita2 = 1, H(B) = 1, and various separation levels
[12], while the full analysis is in [13]. For each inpfit= s, the source ;. The “+” line is the distortion region achieved with separation. It is

splitter randomly assigns a value B according to

Pr(B' = a;|S =s) = Pr(B=a;|S =s)

plotted for! — oc, although it hardly depends drfor I > 3. Note
that separation is far from optimal for< 3 as well. (For example, for
I = 0 see [7].) The solid line is the distortion region achieved with the
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Fig. 4. Inner and outer bounds on the distortion region for a Gaussian mixture sourdexwith

digital-over-analog scheme (independent)ofrhe dotted lines are the The nearest neighbor estimate, that is, estimating each sdmpig
trivial outer bounds aRs(D,) = C, andRs(D2) = Cs. (They also  ¢(S». ), cannot be better than the optimal estimate. Therefore,
hardly depend o for I > 3.) The “0” line and the dashed line are
outer bounds fot = 14 and! = 50, WhICh will be described later. ;

We shall now proceed to derive an outer bound. Suppose we are2 < ZPI (Bf # 4 (52=f))
given some joint source—channel coding scheme, to transmit the source ) ! n‘
n-block S. Let §; andS> be the reconstructions produced by that 1 . A\ & ‘ r a
scheme, achieving distortiod%; andD-, respectively. Lef’.» be the n ; {Pl ( < 2) Pr (Bt 74 (52’1) Vel < 2 )
minimum average probability of error in estimating the vedBofrom . a
the reconstruction vectd, of the second (bad) receiver, i.e., + Pr (| Ne| > )}

IA

_’,’\Tt

IN

D)
(55 > (3 <)

+Pr (1M > %) (14)

P, = %g < - max Pr(Bz =a; |Sz>>

where the expectation is ovﬁﬁ. In Lemma 1 below, we shall derive an N
upper bound o in terms of D». In Lemma 2, we derive an upper n E <(51 _ §2,t)‘||.Nt| < %)
bound onI(S; 81) in terms of P.z. In Theorem 2, we combine the 1 ZPI. ( N < ﬁ)
n 2
t=1

IA

two lemmas and the fact that/ (S; S1) is lower-bounded by the rate (a/2)?
distortion function atD,, and derive a lower bound adf; in terms of
D:. +Pr (1M > 5) (15)
Lemma 1: Let P., and D be defined as above. For any coding ) a
scheme <4/a”- D>+ Pr ( Ml 2 5) (16)
4 D
4 D; R 7+Q<> (7
Po< — 71 < ) (12) '

where in (14) we concluded thai|iV;| < %, then an error implies that
Note that this lemma implies that for a fixed, lim;_.. Py = 0 |9t = 92, 2 5. Als0, in (14) we used the fact th&u(|N:| > 5)
for any Ds < oc. does not depend an Finally, (15) follows by Chebyshev's inequality,
) and (16) since
Proof: Define the nearest neighbor quantizer as

= %ZE((St — Sz,t)Q). O
Lt

q(s) = arg n;%_n |s — ail- 13) Note thatP.» can also be upper-boundedbymax, (Pr(B = a;)).
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Lemma 2: Let P., be as defined above and let

2
A o5+ P 9
§ = Hy(Pox)+Pexlog(m—1) and Ps = s —03. (18)
Then,I(S; §1) satisfies
1 . 1 Ps
it : < = — .
1 (S, 51) < H(B)+ ;log <1 + 012) (19)

Note that the tightest bound ditS; 81) is achieved forP., — 0.

Proof: LetB, N. S, X,Y:,Y., 51, 85 be as above, and let
Z1, Z» ben-blocks of channel noise as described in Definition 2. We,

therefore, have a Markov chaBB — § < X < Y, «— S, and by
Fano’s inequality we have

H(B|S) < H(B|X) < H(B|Y2) < H (B|$:) <ns.  (20)
By the chain rule for mutual information we have foe 1, 2
I(X;Y:) =I(X; B) + I(X; Yi|B) - I(X; B|Y)
=I(X; B) + n(Y;|B) — h(Z;) — I[(X; B|Y;). (21)

By the definition of capacity, and using (21) with= 2, we upper-
boundh(Y2|B) in terms ofC,

nCy > I(X: Ya) = I(X: B) + h(Ya|B) — h(Zs) — I(X: B|Y>)
= H(B) — H(B|X) + h(Y2|B) — h(Z2) — H(B|Y>)
+ H(B|X.Y>)

>n <H(B) + % h(Y2|B) — h(Zy) — ﬁ) (22)

where we used (20) to upper-boutidH (B|Y 2) by 6, and we used the
Markov chain relation to canceéf (B|X) with #(B|X, Y2). Using
(21) withi = 1, we upper-bound(S; S1) in terms ofh(Y1|B)

I(S; 5'1)

IN

I(X;Y)
I(X; B)+ n(Y1|B) — h(Z1) — I(X; B|Y1)
I(X; B)+ h(Y1|B) — h(Z1)

<H(B) + %h(Y1|B) - h(Zl)>

IA

INA

n

(23)

where we used(X; B) < H(B) and the nonnegativity of the mu-
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2)
Rs(Dy) < Cy (26)

3)

a2 1
D > A 27
L= 14 PL(Da)/ot g(2Q0) &7)
where
2
. adi+P
PL(Ds) = ;;HT - 9(p'(D2)) — o3

4 Dy

p(D2) =min<1, = = +2Q
1?2 o2

!
2
and the functiory(+) is defined as

g(il‘) é 22(H5(1)+.}. log,(rn—l)).

Note thatg(p'(D2)), 9(2Q(1)) — 1 asl — oc for any D2 < co.

Proof: By the definition of the rate-distortion function we have
Rs(Dy) < X1I(8; S1). Combining this with (6), (7), (18), (19),
and (12) proves condition 3) in the theorem. Conditions 1) and 2)
follow from Shannon’s joint source—channel coding theorem for
point-to-point channels [14]. This proves the theorem. O

Returning to Fig. 4, we observe the outer bound in two cases: the
“0” line is for { = 14 and the dashed line is fér= 50. We show these
values since for smaller values hfthe outer bound is dominated by
conditions 1) and 2) of Theorem 2. Note that for fixedand! — oo,

D, = R5'(C1) cannot be obtained for any finit@..

The digital-over-analog scheme achieves the paint, D3 ) in the
distortion region. This implies that there is a corner-shaped distortion
region that is achievable. As mentioned before, this point does not de-
pend on the value df. On the other hand, Theorem 2 establishes an
outer bound which depends 6nAs! — o, the outer bound of The-
orem 2 meets the corner-shaped distortion region which is achievable
by the digital-over-analog scheme. Hence, we have characterized the
entire distortion region for this case. This is formally stated in the fol-
lowing theorem.

Theorem 3 (Tightness of Bounds For Highly Separated
Modes): The distortion region for sending the Gaussian mix-
ture sourceS of (1) in the limit as! — oo with fixed ., over a
Gaussian broadcast channel with > H(B), is composed of all
pairs (D:, D») satisfyingD; > Dj andD, > D3, where D}

tual information. Finally, by the entropy power inequality [5], [10], anchnd D3 were defined in Theorem 1. Furthermore, the distortion pair
sinceYz is the independent sum &f; and a white Gaussian vector (Dj, D3) is achievable by the digital-over-analog scheme of Fig. 3.

with powerc3 — o1, we upper-boun@(Y1|B) in terms ofh(Y2|B)
2% h(Y |B) > 2% h(Y1|B) + 2103;(2#@(0'570%))' (24)

Combining (22)—(24), and (2) yields the desired result. O

Proof: The achievability of D}, D3) follows from Theorem 1.
As for the converse part, note that following the definitiong'¢fD-),
g(+), and P, (D>) in (27), we have

llij&g(p/(l)z)) = llil”falo g(2Q(1) =1

Note that the proof of Lemma 2 does not rely on a specific connection

betweenB and.S or a specific distortion measure.

Theorem 2 (Outer Bound)The distortion pair(D;, D2) for

sending the Gaussian mixture sout®f (1) over a Gaussian broad-

cast channel witl; > H(B), may only be achievable if
1

Rs(D1) < C4 (25)

andlim;_. .., P5(D2) = P&. Hence, by (27) and the definition &f},
we havelim inf;_.., Dy > D7. On the other hand, combining (11)
with (26) yieldslim inf;— .. D> > D3. Thus, asymptotically the dis-
tortions cannot be better tha®7, D3). O

Theorem 3 can be explained as follows. For a fixgdand ad —
oo, in order to achieve a finite distortion, the digital informatiBmmust
be transmitted without loss to the worse receiver. This digital code can
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also be decoded by the better receiver. Once both receivers have re- Multiple Description Vector Quantization
moved the digital component from the received signal, the problem be- With a Coarse Lattice

comes that of transmitting a Gaussian source over a Gaussian broadcast

channel. For this problem, analog transmission is optimal. Vivek K Goyal, Member, IEEE Jonathan A. Kelner, and

Jelena Kovéevig, Fellow, IEEE

I1l. CONCLUSION
. . . .. . Abstract—A multiple description (MD) lattice vector quantization tech-
The distortion region for joint source—channel coding over the broagiye for two descriptions was recently introduced in which fine and coarse
cast channel is yet unknown. Here we derived inner and outer bourdgebooks are both lattices. The encoding begins with quantization to the
for this region in one special case. These bounds are asymptoticaljrest point in the fine lattice. This encoding is an inherent optimization
tight. In [13], we also discuss the case of depend2and V. for the decoder that receives both descriptions; performance can be im-

. . roved with little increase in complexity by considering all decoders in the
We believe that some of the ideas we used can be developed furt al encoding step. The altered encoding relies only on the symmetries of

For example, consider a general analog source, which is quantizedi/coarse lattice. This allows us to further improve performance without
a vector quantizer. We can regard the quantizer output as the “digital8ignificant increase in complexity by replacing the fine lattice codebook

part of the source, and the quantization error as the “analog” part. Wigh a nonlattice codebook that respects many of the symmetries of the

can then construct an encoding scheme, similar to the one prese@
here,

se lattice. Examples constructed with the two-dimensional (2-D) hexag-

L L nal lattice demonstrate large improvement over time sharing between pre-
and analyze it with similar tools [15]. viously known quantizers.
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By using the additional structure of a lattice codebook, lattice vector
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