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Since the tables in [4, Ch. 14] deal only with the cases where� � 4,
let us examine in the next example the first two values ofK(n; 1; 5).

Example 1: Clearly,K(4; 1; 5) = 16 and henceM (�3)
1 (4) = 16.

Let thenn = 5. The code

C = Fn2 n f00000; 11100; 00111; 11011g

givesK(5; 1; 5) � 28. In fact, there cannot be a fivefold1-covering
with only 27 codewords. Assume, to the contrary, the existence of such
a codeC. We may assume without loss of generality that00000 be-
longs toC0 = Fn2 nC. Words of weight less than three cannot therefore
exist inC 0. Since there can only be one word of weight four or five in
C 0, at least three words of weight three are inC 0. However, evidently
at most two words of weight three can be inC 0, a contradiction. Thus,
K(5; 1; 5) = 28 = M

(�3)
1 (5).

It follows easily from [13, Theorem 8] (and Theorem 1) that

K(n; 1; �)

�2n=(n+ 1)
! 1

asn ! 1 when� is fixed. Hence, also

M
(�l)
1 (n)

(2l� 1)2n=(n+ 1)
! 1

for a givenl (n ! 1).
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Joint Source–Channel Coding of a Gaussian Mixture
Source Over the Gaussian Broadcast Channel

Zvi Reznic, Student Member, IEEE, Ram Zamir, Senior Member, IEEE,
and Meir Feder, Fellow, IEEE

Abstract—Suppose that we want to send a description of a single source
to two listeners through a Gaussian broadcast channel, where the channel
is used once per source sample. The problem of joint source–channel
coding is to design a communication system to minimize the distortion
at receiver 1 and at the same time minimize the distortion at receiver
2. If the source is Gaussian, the optimal solution is well known, and it
is achieved by an uncoded “analog” scheme. In this correspondence, we
consider a Gaussian mixture source. We derive inner and outer bounds
for the distortion region of all ( ) pairs that are simultaneously
achievable. The outer bound is based on the entropy power inequality,
while the inner bound is attained by a digital-over-analog encoding scheme,
which we present here. We also show that if the modes of the Gaussian
mixture are highly separated, our bounds are tight, and hence, our scheme
attains the entire distortion region. This optimal region exceeds the region
attained by separating source and channel coding, although it does not
contain the “ideal” point ( ) = ( ( ) ( ))

Index Terms—Digital-over-analog scheme, distortion region, joint
source–channel coding, separation principle.

I. INTRODUCTION

The broadcast channel, illustrated in Fig. 1, is a communication
channel in which one sender transmits to two or more receivers. In the
usual formulation of the problem, the sender wishes to send two pri-
vate messages, one to each receiver, and possibly a common message,
to both receivers. These messages need to be transmitted losslessly [1].

Suppose, however, that we are given asinglesource and a fidelity
criterion, and we want to convey the source to both receivers simulta-
neously. Suppose further that the source entropy is large to the extent
that it cannot be sent losslessly through the channel; there must be some
distortion in the receivers’ output. The problem ofjoint source–channel
codingfor the broadcast channel is to find the set of all achievable dis-
tortion pairs(D1; D2) at the two receivers. For a general source, broad-
cast channel, and distortion measure, this problem is still open [2]. We
investigate below one example, and derive inner and outer bounds for
the distortion region. These bounds become tight for a limiting case.

In our example, the channel is adegraded broadcast channel, which
means that if the transmitted information isdigital, then receiver 1 (the
“better” one) can decode all the information that receiver 2 can, and
some additional information. Hence, information decoded at receiver
2 is actually common to both receivers. To minimize the distortion at
both receivers, one might apply a two-step encoding. Step one issource
coding.Here, we create two messages: one that contains a coarse de-
scription of the source and another which is arefinementmessage [3],
[4]. The refinement message is an addendum to the first one, such that
both messages together form a fine description of the source. We shall
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Fig. 1. Lossy transmission of a source through a broadcast channel.

denote byDc andDf the distortions obtained with the coarse and fine
descriptions, respectively. Step two ischannel coding.We use a broad-
cast channel code (see [5, Theorem 14.6.2]) to send the coarse descrip-
tion message to both receivers, and the refinement message to receiver
1 only. Hence, receiver 1 and receiver 2 obtain distortionsDf andDc,
respectively.

The two-step encoding is based onseparation; the source coding and
channel coding are done separately. Unfortunately, unlike for the case
of point-to-point communication, the distortion pair obtained by the
two-step approach is usually suboptimal. This stems from the threshold
effect of digital codes; although the worse receiver cannot decode the
refinement message losslessly, it could still obtain some information
about it. However, no technique exists to utilize this information in an
optimal way [2], [7], [8]. Suboptimality of separation is known for other
multiuser problems as well [5, p. 448]. One simple example, where sep-
aration is strictly suboptimal, is the case of a Gaussian source sent over
a Gaussian broadcast channel, with a squared-error distortion measure.
In fact, if the channel is used once per each source sample, then opti-
mality is achieved in this case by analog transmission, i.e., by sending
the sourceuncoded[6], [7]. Furthermore, the resulting distortion pair is
“ideal” in the sense that there is no conflict between the two receivers.
In the general case, the “ideal” point is not achievable.

In this correspondence, we consider a specific example of source
and channel which enables us to combine the advantages of coded
and uncoded transmission, and gain some mathematical insight. Our
broadcast channel is Gaussian and the distortion measure is squared-
error. The sourceS, which needs to be transmitted over the broadcast
channel, is theGaussian mixturesource. That is,

S = B +N (1)

whereN is a zero-mean white Gaussian with variance�2n andB 2
fa1; . . . ; amg is a discrete random variable which is statistically in-
dependent ofN . One example of such a source, withm = 2, is illus-
trated in Fig. 2. We define

a
�
=

1

2
min
i6=j

(jai � aj j)

and

l
�
= a=�n:

That is,l denotes the separation level of the two closest modes of the
Gaussian mixture.

In Section II, we derive nontrivial inner and outer bounds for the set
of the achievable distortion pairs(D1; D2). Specifically, we present
the digital-over-analog scheme that is used to derive the inner bound in

Fig. 2. Example of a Gaussian mixture source with two modes.

Theorem 2. Hybrid analog–digital schemes were suggested for various
joint source–channel coding settings, mainly for the case where the
channel bandwidth is larger than the source bandwidth, e.g., [9], [7],
[8]. However, no proof of optimality was given for broadcasting.

The outer bound is given in Theorem 2, whose proof resembles
Bergmans’ proof of the converse theorem for the Gaussian broadcast
channel (for lossless transmission) [10]. It is based on the entropy
power inequality. In Theorem 3, we show that as the Gaussian mixture
becomes highly separated(l ! 1), the two bounds become tight,
and hence, the entire distortion region is completely characterized.
The asymptotic solution is nontrivial in the sense that, on one hand,
it is strictly better than source–channel separation, and on the other
hand, it is strictly worse than the ideal (nonconflict) distortion pair.

II. I NNER AND OUTER BOUNDS ON THEDISTORTIONREGION

Definition 1: (D1; D2) is an achievable distortion pairfor the
source S, the distortion measured(s; ŝ), and the memoryless
broadcast channelf(y1; y2jx) if for somen there exist an encoding
functionXXX = in(SSS) and two reconstruction functionŝSSS111 = g1n(YYY 111)

andŜSS222 = g2n(YYY 222) such that fori = 1; 2

Di = E d(SSS; ŜSSiii)

where bold-face letters denote blocks of sizen, i.e.,SSS = (S1; . . . ; Sn)
is the source block,XXX = (X1; . . . ; Xn) is the channel input block,
YYY iii = (Yi; 1; . . . ; Yi; n) are the channel output blocks, andŜSSiii =
(Ŝi; 1; . . . ; Ŝi; n) are the reconstruction blocks.

The achievable distortion regionis defined as the closure of the set
of achievable distortion pairs.

The achievable distortion region must be convex by a time-sharing
argument.

Definition 2: A Gaussian broadcast channelf(y1; y2jx) satisfies
for i = 1; 2

1

n

n

t=1

E(X2

t ) � P; Yi = X + Zi; Zi � N (0; �2i )

where Z1; Z2; and X are mutually statistically independent, and
�22 > �21 .

The Gaussian broadcast channel is a degraded broadcast channel [5,
p. 379]. The individual capacitiesC1 andC2 of the good and bad chan-
nels, respectively, are given by

Ci =
1

2
log(1 + P=�2i ); i = 1; 2: (2)
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(a) (b)

(c)

Fig. 3. Digital-over-analog encoding scheme. (a) Encoder. (b) Broadcast
channel (i = 1; 2). (c) Decoder (i = 1; 2).

(Note that forlosslesstransmission, the rate pair(C1; C2) lies outside
of the capacity region of the Gaussian broadcast channel [10].)

With the above definitions we state that our goal is to find the achiev-
able distortion region for the Gaussian mixture source, the Gaussian-
broadcast channel (with one channel use per source sample), and the
squared error distortion measure

d(SSS; ŜSSiii) =
1

n

n

t=1

(St � Ŝi; t)
2: (3)

We start by calculatingRS(D), the rate-distortion function ofS.
We note that forD � �2n we can writeS as the independent sum of a
Gaussian with varianceD and some random variable. Hence, by ([11,
Theorem 4.3.1]), the Shannon lower bound is tight. That is,

RS(D) =h(S)�
1

2
log(2�eD) (4)

= I(B; S) + h(SjB)�
1

2
log(2�eD) (5)

=H(B)� �(l) +
1

2
log

�2n
D

(6)

where�(l)
�
= H(BjS), and we used

h(SjB) = h(N) =
1

2
log(2�e�2n):

Using Fano’s inequality and the nonnegativity ofH(BjS), one can
verify that

0 � �(l) � Hb(2Q(l)) + 2Q(l) log(m� 1) (7)

whereHb(�) is the binary entropy function andQ is the error function.
Clearly,�(l) ! 0 asl ! 1.

The source-decomposition and digital-over-analog(or simply the
digital-over-analog) encoder and decoders are illustrated in Fig. 3. We
shall briefly analyze this scheme here. Similar analysis can be found in
[12], while the full analysis is in [13]. For each inputS = s, the source
splitter randomly assigns a value toB0 according to

Pr(B0 = aijS = s) = Pr(B = aijS = s)

for everyi. It then setsN 0 = S�B0. By taking the expectation overS
we observe that for everyi,Pr(B0 = ai) = Pr(B = ai). In fact, since
the conditional joint distribution ofB0 andN 0 givenS is the same as
that ofB andN givenS, we haveN 0 � N (0; �2n), andB0 andN 0

are statistically independent.
Each sampleN 0 is scaled by a scalarK1 to produceXN . A

source–channel codein encodes then-blockBBB0 = (B0

1; . . . ; B
0

n) to
produce the vectorXXXB = in(BBB

0), which is then added to the vector
XXXN to produce the encoder outputXXX. Hence,B0 is transmitted over a
virtual channel whose noise is the sum ofXN and the channel noise.
To transmitB0 reliably to the worse receiver (and hence also to the
better receiver) we must have for some� > 0

H(B0) = H(B) = CB2 �� =
1

2
log 1 +

PB
�22 + PG

�� (8)

whereCB2 is the capacity of the worse (point-to-point) virtual channel,
andPB andPG are the powers ofXXXBBB andXXXNNN , respectively. Com-
bining (8) and the power constraintPG+PB = P and solving forPG
yields for� ! 0

PG = P �

G

�
=
�22 + P

22H(B)
� �22 and K1 =

P �

G

�2n
: (9)

Since by (8)H(B0) < CB2, both receivers can decodeBBB0 loss-
lessly asn!1, and subtract the associated codewordXXXBBB . Thus, as
� ! 0, the expected distortion is asymptotically the same as the av-
erage squared error for a Gaussian source with variance�2n transmitted
uncoded with powerP �

G over channels with additive white Gaussian
noise with powers�21 and�22 . This leads (using the minimum-mean-
squared-error gainK2i = P �

G=(P
�

G + �2i )), to the following theorem.

Theorem 1 (Inner Bound):The distortion pair(D1; D2), for
sending the Gaussian mixture sourceS of (1) over a Gaussian
broadcast channel withC2 � H(B), is achievable ifD1 � D�

1 and
D2 �D�

2 , where

(D�

1 ; D
�

2) =
�2n

1 + P �

G=�
2
1

;
�2n

1 + P �

G=�
2
2

: (10)

Note that by (2), (6), (9), and (10) we have

C2 = RS(D
�

2) + �(l) (11)

where�(l) is defined in (6). Hence,�(l) is the “wasted rate” with re-
spect to receiver 2, which vanishes forl ! 1. Whenl is small, we
could reduce the waste by allowing some probability of misdetecting
B by receiver 2. This would allow to shift some of the power from the
digital part to the analog part, up to the point whereD2 is minimized.
However, even with this minimization, we do not claim that our scheme
is optimal for finitel. Hence, we shall skip this optimization process
and simplify our analysis.

Also note that sincePG in (9) was optimized for receiver 2,D�

1 is
strictly larger thanR�1

S (C1) for any l. Still, we will prove that the
scheme is optimal over all joint source–channel codes forl!1.

Fig. 4 depicts the distortion region of a Gaussian mixture source with
two modes(m = 2), transmitted over a Gaussian broadcast channel.
Here, we show a channel withP = 5, �21 = 0:158, and�22 = 0:5,
and a source with�2n = 1, H(B) = 1, and various separation levels
l. The “+” line is the distortion region achieved with separation. It is
plotted forl ! 1, although it hardly depends onl for l > 3. Note
that separation is far from optimal forl � 3 as well. (For example, for
l = 0 see [7].) The solid line is the distortion region achieved with the
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Fig. 4. Inner and outer bounds on the distortion region for a Gaussian mixture source withl > 3.

digital-over-analog scheme (independent ofl). The dotted lines are the
trivial outer bounds atRS(D1) = C1 andRS(D2) = C2. (They also
hardly depend onl for l > 3.) The “o” line and the dashed line are
outer bounds forl = 14 andl = 50, which will be described later.

We shall now proceed to derive an outer bound. Suppose we are
given some joint source–channel coding scheme, to transmit the source
n-block SSS. Let ŜSS1 and ŜSS2 be the reconstructions produced by that
scheme, achieving distortionsD1 andD2, respectively. LetPe2 be the
minimum average probability of error in estimating the vectorBBB from
the reconstruction vector̂SSS2 of the second (bad) receiver, i.e.,

Pe2 =
1

n

n

t=1

E 1� max
i=1; ...;m

Pr Bt = aij ŜSS2

where the expectation is overŜSS2. In Lemma 1 below, we shall derive an
upper bound onPe2 in terms ofD2. In Lemma 2, we derive an upper
bound onI(SSS; ŜSS111) in terms ofPe2. In Theorem 2, we combine the
two lemmas and the fact that1

n
I(SSS; ŜSS111) is lower-bounded by the rate

distortion function atD1, and derive a lower bound onD1 in terms of
D2.

Lemma 1: Let Pe2 andD2 be defined as above. For any coding
scheme

Pe2 �
4

l2
�
D2

�2n
+ 2Q

l

2
: (12)

Note that this lemma implies that for a fixed�n, liml!1 Pe2 = 0
for anyD2 < 1.

Proof: Define the nearest neighbor quantizer as

q(s) = argmin
a

js� aij: (13)

The nearest neighbor estimate, that is, estimating each sampleBt by
q(Ŝ2; t), cannot be better than the optimal estimate. Therefore,

Pe2 �
1

n

n

t=1

Pr Bt 6= q Ŝ2; t

�
1

n

n

t=1

Pr jNtj <
a

2
Pr Bt 6= q Ŝ2; t jNtj <

a

2

+ Pr jNtj �
a

2

�
1

n

n

t=1

Pr jNtj <
a

2

� Pr St � Ŝ2; t
2

>
a

2

2

jNtj <
a

2

+ Pr jN1j �
a

2
(14)

�
1

n

n

t=1

Pr jNtj <
a

2

E St � Ŝ2; t
2

jNtj <
a

2

(a=2)2

+ Pr jN1j �
a

2
(15)

� 4=a2 �D2 + Pr jN1j �
a

2
(16)

=
4

l2
�
D2

�2n
+ 2Q

l

2
(17)

where in (14) we concluded that ifjNtj <
a

2
, then an error implies that

jSt � Ŝ2; tj �
a

2
. Also, in (14) we used the fact thatPr(jNtj >

a

2
)

does not depend ont. Finally, (15) follows by Chebyshev’s inequality,
and (16) since

D2 =
1

n
t

E((St � Ŝ2; t)
2):

Note thatPe2 can also be upper-bounded by1�maxi(Pr(B = ai)).
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Lemma 2: Let Pe2 be as defined above and let

� = Hb(Pe2)+Pe2 log(m�1) and P�
�
=

�22 + P

22(H(B)��)
��22 : (18)

Then,I(SSS; ŜSS111) satisfies

1

n
I SSS; ŜSS111 � H(B) +

1

2
log 1 +

P�
�21

: (19)

Note that the tightest bound onI(SSS; ŜSS111) is achieved forPe2 ! 0.

Proof: Let BBB; NNN; SSS; XXX; YYY 111, YYY 222; ŜSS111; ŜSS222 be as above, and let
ZZZ111,ZZZ222 ben-blocks of channel noise as described in Definition 2. We,
therefore, have a Markov chainBBB $ SSS $ XXX $ YYY 2 $ ŜSS2 and by
Fano’s inequality we have

H(BBBjSSS) � H(BBBjXXX) � H(BBBjYYY 222) � H BjŜ2BjŜ2BjŜ2 � n�: (20)

By the chain rule for mutual information we have fori = 1; 2

I(XXX; YYY iii) = I(XXX; BBB) + I(XXX; YYY iiijBBB)� I(XXX; BBBjYYY iii)

= I(XXX; BBB) + h(YYY iiijBBB)� h(ZZZiii)� I(XXX; BBBjYYY iii): (21)

By the definition of capacity, and using (21) withi = 2, we upper-
boundh(YYY 222jBBB) in terms ofC2

nC2 � I(XXX; YYY 222) = I(XXX; BBB) + h(YYY 222jBBB)� h(ZZZ222)� I(XXX; BBBjYYY 222)

=H(BBB)�H(BBBjXXX) + h(YYY 222jBBB)� h(ZZZ222)�H(BBBjYYY 222)

+H(BBBjXXX; YYY 222)

�n H(B) +
1

n
h(YYY 222jBBB)� h(Z2)� � (22)

where we used (20) to upper-bound1
n
H(BBBjYYY 222) by �, and we used the

Markov chain relation to cancelH(BBBjXXX) with H(BBBjXXX; YYY 222). Using
(21) with i = 1, we upper-boundI(SSS; ŜSS111) in terms ofh(YYY 111jBBB)

I(SSS; ŜSS111) � I(XXX; YYY 111)

= I(XXX; BBB) + h(YYY 111jBBB)� h(ZZZ111)� I(XXX; BBBjYYY 111)

� I(XXX; BBB) + h(YYY 111jBBB)� h(ZZZ111)

�n H(B) +
1

n
h(YYY 111jBBB)� h(Z1) (23)

where we usedI(X; B) � H(B) and the nonnegativity of the mu-
tual information. Finally, by the entropy power inequality [5], [10], and
sinceYYY 222 is the independent sum ofYYY 111 and a white Gaussian vector
with power�22 � �21 , we upper-boundh(YYY 111jBBB) in terms ofh(YYY 222jBBB)

2 h(YYY jBBB) � 2 h(YYY jBBB) + 2log(2�e(� �� )): (24)

Combining (22)–(24), and (2) yields the desired result.

Note that the proof of Lemma 2 does not rely on a specific connection
betweenB andS or a specific distortion measure.

Theorem 2 (Outer Bound):The distortion pair(D1; D2) for
sending the Gaussian mixture sourceS of (1) over a Gaussian broad-
cast channel withC2 > H(B), may only be achievable if

1)

RS(D1) � C1 (25)

2)

RS(D2) � C2 (26)

3)

D1 �
�2n

1 + P 0
G
(D2)=�21

�
1

g(2Q(l))
(27)

where

P 0G(D2)
�
=
�22 + P

22H(B)
� g(p0(D2))� �22

p0(D2) = min 1;
4

l2
�
D2

�2n
+ 2Q

l

2

and the functiong(�) is defined as

g(x)
�
= 22(H (x)+x log(m�1)):

Note thatg(p0(D2)); g(2Q(l))! 1 asl!1 for anyD2 <1.

Proof: By the definition of the rate-distortion function we have
RS(D1) �

1
n
I(SSS; ŜSS111). Combining this with (6), (7), (18), (19),

and (12) proves condition 3) in the theorem. Conditions 1) and 2)
follow from Shannon’s joint source–channel coding theorem for
point-to-point channels [14]. This proves the theorem.

Returning to Fig. 4, we observe the outer bound in two cases: the
“o” line is for l = 14 and the dashed line is forl = 50. We show these
values since for smaller values ofl, the outer bound is dominated by
conditions 1) and 2) of Theorem 2. Note that for fixed�n andl!1,
D1 = R�1

S
(C1) cannot be obtained for any finiteD2.

The digital-over-analog scheme achieves the point(D�
1 ; D

�
2) in the

distortion region. This implies that there is a corner-shaped distortion
region that is achievable. As mentioned before, this point does not de-
pend on the value ofl. On the other hand, Theorem 2 establishes an
outer bound which depends onl. As l ! 1, the outer bound of The-
orem 2 meets the corner-shaped distortion region which is achievable
by the digital-over-analog scheme. Hence, we have characterized the
entire distortion region for this case. This is formally stated in the fol-
lowing theorem.

Theorem 3 (Tightness of Bounds For Highly Separated
Modes): The distortion region for sending the Gaussian mix-
ture sourceS of (1) in the limit asl ! 1 with fixed �n, over a
Gaussian broadcast channel withC2 > H(B), is composed of all
pairs (D1; D2) satisfyingD1 � D�

1 andD2 � D�
2 , whereD�

1

andD�
2 were defined in Theorem 1. Furthermore, the distortion pair

(D�
1 ; D

�
2) is achievable by the digital-over-analog scheme of Fig. 3.

Proof: The achievability of(D�
1 ; D

�
2) follows from Theorem 1.

As for the converse part, note that following the definitions ofp0(D2),
g(�), andP 0G(D2) in (27), we have

lim
l!1

g(p0(D2)) = lim
l!1

g(2Q(l)) = 1

andliml!1 P 0G(D2) = P �G. Hence, by (27) and the definition ofD�
1 ,

we havelim inf l!1D1 � D�
1 . On the other hand, combining (11)

with (26) yieldslim infl!1D2 � D�
2 . Thus, asymptotically the dis-

tortions cannot be better than(D�
1 ; D

�
2).

Theorem 3 can be explained as follows. For a fixed�n and asl !
1, in order to achieve a finite distortion, the digital informationB must
be transmitted without loss to the worse receiver. This digital code can
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also be decoded by the better receiver. Once both receivers have re-
moved the digital component from the received signal, the problem be-
comes that of transmitting a Gaussian source over a Gaussian broadcast
channel. For this problem, analog transmission is optimal.

III. CONCLUSION

The distortion region for joint source–channel coding over the broad-
cast channel is yet unknown. Here we derived inner and outer bounds
for this region in one special case. These bounds are asymptotically
tight. In [13], we also discuss the case of dependentB andN .

We believe that some of the ideas we used can be developed further.
For example, consider a general analog source, which is quantized by
a vector quantizer. We can regard the quantizer output as the “digital”
part of the source, and the quantization error as the “analog” part. We
can then construct an encoding scheme, similar to the one presented
here, and analyze it with similar tools [15].
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Multiple Description Vector Quantization
With a Coarse Lattice

Vivek K Goyal, Member, IEEE, Jonathan A. Kelner, and
Jelena Kovǎcević, Fellow, IEEE

Abstract—A multiple description (MD) lattice vector quantization tech-
nique for two descriptions was recently introduced in which fine and coarse
codebooks are both lattices. The encoding begins with quantization to the
nearest point in the fine lattice. This encoding is an inherent optimization
for the decoder that receives both descriptions; performance can be im-
proved with little increase in complexity by considering all decoders in the
initial encoding step. The altered encoding relies only on the symmetries of
the coarse lattice. This allows us to further improve performance without
a significant increase in complexity by replacing the fine lattice codebook
with a nonlattice codebook that respects many of the symmetries of the
coarse lattice. Examples constructed with the two-dimensional (2-D) hexag-
onal lattice demonstrate large improvement over time sharing between pre-
viously known quantizers.

Index Terms—Codebook optimization, high-rate source coding, lattice
vector quantization.

I. INTRODUCTION

By using the additional structure of a lattice codebook, lattice vector
quantizers can be implemented much more efficiently than their more
general counterparts. By labeling the points of a lattice with ordered
pairs of points in a sublattice, Servetto, Vaishampayan, and Sloane
(SVS) create the two descriptions of amultiple description(MD) lat-
tice vector quantizer that achieves similar performance gains over un-
constrained MD vector quantizers [1], [2]. However, these quantizers
turn out to be inherently optimized for the central decoder. This corre-
spondence describes the result of modifying the encoding and decoding
used by SVS to minimize a weighted combination of central and side
distortions, while keeping the index assignments generated by their el-
egant theory. This generalization creates a continuum of quantizers for
each SVS quantizer, improving the convex hull of operating points. It
does this while retaining most of the computational advantages of lat-
tice codebooks.

A. MD Coding

In an MD coding scenario, sequences of symbols are sent separately
on two or more channels. Each sequence of channel symbols is called
a description,and decoders are designed for each nonempty subset of
the descriptions. Such a system with two channels is depicted in Fig. 1.
This is a generalization of usual “single description” source coding.

We shall focus on the case in which the encoder receives an inde-
pendent and identically distributed (i.i.d.) sequence of source symbols
fXkg

K

k=1 to communicate to three receivers over two noiseless (or
error-corrected) channels. One decoder (thecentral decoder) receives
information sent over both channels while the remaining two decoders
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